学生论文
|
论文查询结果 |
返回搜索 |
|
|
|
| 论文编号: | 11615 | |
| 作者编号: | 2120172966 | |
| 上传时间: | 2020/6/9 15:01:26 | |
| 中文题目: | 互联网金融理财平台个性化推荐对理财用户购买意愿的影响研究 | |
| 英文题目: | Research on the Influence of Personalized Recommendation of Internet Financial Platform on the Purchase Intention of Financial Users | |
| 指导老师: | 王芳 | |
| 中文关键字: | 互联网金融;理财用户;个性化推荐; 购买意愿 | |
| 英文关键字: | Internet finance;financial users;personalized recommendation; purchase intention | |
| 中文摘要: | 近年来,个性化推荐系统的商业应用越来越普及,各大互联网平台一直在致力于优化升级工作,以便向用户提供更加科学可靠的信息推荐服务来辅助决策。个性化推荐系统应用广泛,特别是在各大电商平台的应用尤为成功,合理的框架设计和科学的推荐策略有效提高了平台用户的购买意愿,促进了交易的发生。然而,现阶段关于互联网金融理财平台个性化推荐的研究明显不足,亟需针对系统设计和推荐策略研究提出更加科学的合理建议。在此背景下,从平台理财用户自身出发,研究互联网金融理财平台个性化推荐对理财用户购买意愿的影响因素显得意义重大。 本文第一部分是绪论章节,交代了研究背景及意义、研究方法及框架,并总结了本文的创新点。其次,介绍了个性化推荐系统、购买意愿等概念,并梳理了互联网金融理财、个性化推荐系统的技术研究、互联网金融理财产品购买意愿影响因素研究、个性化推荐对购买意愿的影响研究等领域的研究成果,发现目前关于个性化推荐系统的研究主要集中于技术层面的算法优化方向,从购买意愿的影响因素视角来探究个性化推荐系统改进方向的研究相对匮乏;随后,在TPB、TAM、SOR理论等理论基础上,笔者构建了研究模型,并结合文献和实际经验提出研究假设:在互联网金融理财平台个性化推荐应用场景下,产品信息编排、产品信息内容、产品信息质量、产品信息推荐方式、产品信息推荐效果、平台形象6个因素均对理财用户的购买意愿产生影响。然后根据己有文献成果,合理选择了各个维度的测量问项,并通过问卷星发放电子问卷收集数据,利用SPSS23.0以及AMOS23.0等统计软件对问卷数据分析,验证假设成立。同时,对理财用户不同个体特征和理财习惯与购买意愿之间的关系也做了相应研究。最后从理财用户购买意愿的影响因素视角对互联网金融理财平台个性化推荐策略提出相关建议。 | |
| 英文摘要: | In recent years,the commercial application of personalized recommendation system is becoming more and more popular.Each major Internet platform has been committed to the optimization and upgrading work in order to provide users with more scientific and reliable information recommendation services to assist decision-making.Personalized recommendation system is widely used,especially in major e-commerce platforms.Reasonable framework design and scientific recommendation strategy effectively improve the purchase intention of platform users and promote the occurrence of transactions.However,at this stage,the research on personalized recommendation of Internet financial management platform is obviously insufficient,so it is urgent to put forward more scientific and reasonable suggestions for system design and recommendation strategy research.In this context,it is of great significance to study the influence factors of personalized recommendation of Internet financial platform on the purchase intention of financial users from the perspective of platform financial users themselves. The first part of this paper is the introduction chapter,which explains the research background and significance,research methods and framework,and summarizes the innovation of this paper.Secondly,it introduces the concepts of personalized recommendation system and purchase intention, and combs the research results in the fields of Internet financial management,technology research of personalized recommendation system,influencing factors of purchase intention of Internet financial products,and the influence of personalized recommendation on purchase intention.It is found that the current research on Personalized Recommendation system mainly focuses on the technical level Then,based on TPB,TAM,SOR theory and other theories,the author constructs a research model,and combines literature and practical experience to propose research hypotheses: in the application scenario of personalized recommendation of Internet financial management platform,product information arrangement,production Product information content,product information quality, product information recommendation method,product information recommendation effect and platform image all affect the purchase intention of financial users.Then, according to the existing literature results,the measurement items of each dimension are selected reasonably,and the data are collected through the electronic questionnaire sent by the questionnaire star.SPSS23.0 and AMOS23.0 are used to analyze the questionnaire data and verify the hypothesis.At the same time,the relationship between different individual characteristics of financial users,financial habits and purchase intention is also studied. Finally,from the perspective of the influencing factors of financial users' purchase intention,this paper puts forward some suggestions on the personalized recommendation strategy of Internet financial platform. | |
| 查看全文: | 预览 下载(下载需要进行登录) |